Duality between Temporal Networks and Signals: Extraction of the Temporal Network Structures
نویسندگان
چکیده
We develop a framework to track the structure of temporal networks with a signal processing approach. The method is based on the duality between networks and signals using a multidimensional scaling technique. This enables a study of the network structure using frequency patterns of the corresponding signals. An extension is proposed for temporal networks, thereby enabling a tracking of the network structure over time. A method to automatically extract the most significant frequency patterns and their activation coefficients over time is then introduced, using nonnegative matrix factorization of the temporal spectra. The framework, inspired by audio decomposition, allows transforming back these frequency patterns into networks, to highlight the evolution of the underlying structure of the network over time. The effectiveness of the method is first evidenced on a toy example, prior being used to study a temporal network of face-to-face contacts. The extraction of sub-networks highlights significant structures decomposed on time intervals.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملDepth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملProper integration time of polarization signals of internetwork regions using Sunrise/IMaX data
Distribution of magnetic fields in the quiet-Sun internetwork areas has been affected by weak polarization (in particular Stokes Q and U) signals. To improve the signal-to-noise ratio (SNR) of the weak polarization signals, several approaches, including temporal integrations, have been proposed in the literature. In this study, we aim to investigate a proper temporal-integration time with which...
متن کاملنقش حروف ربط زمان دار در تعیین رابطۀ زمانی بین رویدادهای فعلی در پیکرۀ متون زبان فارسی معاصر
This paper involves in prediction of temporal relation between tensed-verb events on the basis of conjunctions in texts. For this purpose, tensed verb event data were extracted from Contemporary Persian Corpus and were examined carefully. The temporal relations between events were identified. After analyzing data on the basis of temporal relation according to Bird’s and Allen’s categorization, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.03044 شماره
صفحات -
تاریخ انتشار 2015